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Abstract—Several methods and techniques for data 

classification are available within the framework of supervised 

induction. In supervised machine learning by generation of rules, 

classification rules are automatically built at the learning phase. 

At classification phase, an inference engine uses rules to classify 

new objects. SUCRAGE is a machine learning system under this 

framework where rule is about: IF [premise] THEN [conclusion]. 

"Conclusions" are hypotheses about the membership of a 

"premise" in a given class; while "premise" regroups correlated 

features. The key of this classification is, then, about discovering 

the right dependencies to construct the right rules. We propose 

here a new form of discovering dependencies within data sets. 

This method consists of generating n classifiers; each one is 

specialized in the recognition of one class. The final rule base is a 

conjunction of all these particular classifiers. A classifier is a 

group of rules where dependencies are discovered from two data 

subsets. The first one contains instances belonging to the same 

class. The second one regroups the instances of all other classes. 

This method, also known by OAA (One-Against-All) or OVA 

(One-Vs-All), is used in various learners such as in decision trees 

or SVM.  We present here experimental tests with several 

datasets. The obtained results and their comparison with other 

methods of discovering dependencies are also given. 
 

 
Index Terms—Supervised learning, Correlation, Rules 

generation, One against all 

 

I. INTRODUCTION 

N inductive training process we try to derive a complete and 

correct description of a phenomenon, starting with labeled 

data and specific observations of this phenomenon to make 

conclusions and predictions. In our case, the process is about 

training data instances to obtain a rules’ base. SUCRAGE [1] 

is a supervised learning system by rules generation; rules are 

generated from a multi-attribute selection. This selection is 

done by research for dependencies and correlations between 

the components of training vectors [2]. In mono-attribute 

methods, the construction of rule’s conditions is done by one 

attribute at a time. This could ignore the fact of dependencies 

that could exist between data attributes. Unlike mono-attribute 

methods, SUCRAGE, as a multi- 
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attribute method, allows the exploitation of the eventual  

predictive power of a block of attributes. In discovering 

dependencies between features, two methods were proposed in 

the first version of SUCRAGE [1]; either discovering 

correlations within all training vectors (all classes merged 

research) or within vectors of one class (Intra-classes 

research). In this precise context, we propose a method for 

discovering dependencies by confronting instances of one 

class to all others. This could release discriminative 

information about a class. 

This paper is organized as follow. First we introduce 

SUCRAGE, a supervised classification system by generation 

of rules. Then we present our method of discovering 

dependencies among all previous others. Finally we provide 

experimental support for this method and conclude with the 

principal prospects of this study.  

 

II. SUCRAGE – SUPERVISED CLASSIFICATION BY RULES 

AUTOMATIC GENERATION 

SUCRAGE is a multi-attribute supervised classifier by rules 

generation. The process of classification is done through two 

phases: Training and Recognition. In the training phase we try 

to generate a base of rules from labeled examples. The second 

phase classifies new (unlabeled) instances with the generated 

rules. A rule based classifier generally uses a set of IF-THEN 

rules for classification. In SUCRAGE an IF-THEN rule is an 

expression of the form: 

IF 𝐴1 AND 𝐴2 AND …  𝐴𝐾  THEN 𝑦, 𝛼 
--Ai: a condition of the form Xj in [a,b]. 

--Xj : the jth component of the vector representing an 

example. 

--[a,b] : the interval resulting from discretization of the 

fields of an attribute, here from Xj. 

--y: an assumption on the membership to a class. 

--α : a degree of belief representing the uncertainty of a 

conclusion. 

SUCRAGE is a polythetic training method looking for 

regrouping attributes into blocks. The selection of a block of 

attributes is done by a research of correlations between the 

components of the training vectors. Locating dependencies is 

done by statistical measures [3], [4], [5]. In [6] different 

measures are proposed to identify correlations and 

dependencies within a sample of datasets: 

--Numerical features: a linear correlation of Bravais 

Pearson is used; 
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--Ordinal features: Kendall's and Spearman's rank 

correlations are used; 

--Symbolic features: Chi squared independence test, V 

Cramer factor and Symmetrical Uncertainty are used. 

The idea is to locate privileged correlations between the 

attributes of training vectors and to generate rules considering 

these correlations:  the correlated features are gathered in the 

same premise. Generating rules requires then some specific 

points: 

--Which features should be gathered together? 

--How should values be associated to each feature, i.e. how 

should intervals [a,b] be chosen?  

--How is the premise of a rule built?  

--How should an uncertainty of a rule be represented? 

A. Correlated Components 

The first stage consists on calculating the correlations’ 

matrix, R, between the components of the training set vectors. 

Let p be the number of features, R is noted by: R= (𝑟𝑖,𝑗 )1≤𝑖≤𝑝
1≤𝑗≤𝑝

. 

𝑅 =  

1 𝑟1,2 … 𝑟1,𝑝

𝑟2,1 1 … 𝑟2,𝑝
…
𝑟𝑝 ,1

…
𝑟𝑝 ,2

…
…

…
1

  

𝑟𝑖,𝑗  is the measure of dependency between two features 𝑋i and 

𝑋j. 

The following stage is to determine the threshold of the 

matrix R. We decide that 𝑋i and 𝑋j are correlated if the 

absolute value of 𝑟𝑖,𝑗  is higher than a threshold 𝜃 that we fix. 

The decision procedure is then defined by: 

 

If  𝑟𝑖,𝑗  < 𝜃 Then 𝑋i and 𝑋j are not correlated And  𝑟𝑖,𝑗 = 0;  

Else  𝑟𝑖,𝑗 = 1. 

 

For example, in the case of a dataset examples represented 

by 5- components vectors, the thresholded correlation matrix 

obtained is : 

𝑅 =

 
 
 
 
 
1 1 0 0 0
1 1 1 0 0
0
0
0

1
0
0

1
0
0

0
1
1

0
1
1 
 
 
 
 

 

 

From this thresholded matrix, we can extract correlated 

components: the features that should be gathered together in 

the same premise. For this example we will then group 

together (X1,X2,X3) and (X4, X5). 

B. Discretization 

Discretizing numeric features is widespread and 

recommended in several works [7], [8]. A lot of methods are 

proposed to identify the way how a feature should be split. We 

distinguish two different categories: supervised and 

unsupervised methods. In a regular unsupervised 

discretization, each feature is cut according to a number of 

intervals already fixed by the expert. M equal subintervals are 

obtained, so M regions rg_i for each attribute represent the 

new values. In supervised discretization methods as in 

MDLPC [9], cut-off points are chosen properly. This could 

obviously influence the accuracy of our classifier. Certainly, 

discretization leads to a loss of information and there’s no 

substitute for precise numeric information, but this phase is 

delayed in training process as far as it could be. SUCRAGE 

discretize features to build premises then rules (see following 

section). 

C. Premises construction 

After discretizing the numeric features, for each correlated 

component and for each attribute we build premises with all 

possible combinations of rg_i. Fig. 1 illustrates a premise’s 

construction in the case of 2 correlated features {𝑋4, 𝑋5} and 

M=4 discretization subintervals.  

D. Rules conclusions 

After constructing premises, assigning conclusions to each 

premise is the next step. This step leads to generate C rules (C 

is the number of classes). So for each premise all possible 

conclusions are generated. Conclusions are assumptions on the 

membership of a class with some degree of certainty.  The 

relevance of each generated rule is evaluated compared to the 

density of the examples belonging to the premise of the 

considered rule. A degree of belief is associated with each 

rule. In this article we propose to represent this degree by 

conditional probability. Such degree is estimated on the 

training set according to frequency approach. 

III. DISCOVERING CORRELATIONS IN SUCRAGE   

The key of SUCRAGE method is to locate attributes 

dependencies. We present here three different scenarios of 

discovering these dependencies within the training vectors of a 

dataset. Two of them (all class merged together and intra-

classes) are already presented in [1]. A new strategy of 

discovering correlations is, then, proposed. All these methods 

describe the way we use correlations measures (linear 

correlation, V Cramer … as previously described) in order to 

construct a rule-based classifier. 

A. All class merged together 

In an all-class merged together approach [1]; rules are built 

from correlated components discovered in ALL training 

vectors of a dataset. The whole instances contribute to the 

generation of correlated components and then to one classifier 

(classification rules). This method is carried out on all the 

units of training sets without distinction of class. Thus, the 

 
Fig. 1.  Example of space’s partition of two correlated attributes 
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research for correlations is done within examples of various 

classes. 

B. Intra-classes 

This method is more original than the first one. In this 

method, correlations and dependencies are sought after 

between the instances of the same class. It’s better to focus on 

examples belonging to the same class and seek correlations 

within these data sets. This method leads to better characterize 

a class and release some of its properties. Each class is thus 

characterized by its own matrix of correlations and its own set 

of correlated attributes [1]. For C classes we obtain C 

matrixes. The final correlated features gather (union) all found 

correlated components (from the C matrixes) to make one base 

of rules. 

C. One class against all others 

The one against all is an original technique used to solve 

multiclass problems for binary learners like SVM, decision 

trees and Neural Bayes [10]. This algorithm can also be used 

in a more general classification problem "multi-label 

classification". In [11] the classifier for a class i is trained to 

predict "Is the label i or not" thus distinguishing examples in 

class i from all other examples. Predictions are done by 

evaluating the n examples and randomizing over those which 

predict "yes" or over all n labels if all answers are "no". 

We try to apply here the same scheme but with some 

modifications to make it fit with our framework. The main 

goal is to build multiple classifiers; each one is specialized in 

predicting a certain class yi. These classifiers are built from 

correlated components discovered from confronting examples 

of a class yi to all others together. 2C (the number of the class 

labels) different sub-datasets are used then for the research of 

correlated components two by two. The dataset Ω is then 

transformed into C different sub-datasets: 

 Ω𝑦1 , Ω𝑦 1 ,  Ω𝑦2, Ω𝑦 2 , … ,  Ω𝑦𝑐 , Ω𝑦 𝑐 . 

 

From confronting each two sub-datasets, Ω𝑦𝑖 (contains the 

examples of one class  𝑦𝑖) and Ω𝑦 𝑖 (contains the examples of 

all classes except 𝑦𝑖), 2 different set of correlation 

components, CCyi  and CCy i  found from correlations’ matrix 

𝑅𝑦i and 𝑅𝑦 i. 3 kinds of correlated components are then 

discovered (Fig. 3). More precisely, we distinguish the 

following sets of correlated components: 

--CCSyi  = CCyi \ CCy i : these correlated components are only 

found from Ω𝑦i. These components could predict a class yi 

easily. So, we assign to premises created from these correlated 

components only the class yi. 

--CCSyi ,y i  = CCyi  ∩ CCy i  : found from both sub-datasets 

Ω𝑦i and Ω𝑦 i. These components could predict either examples 

from a class yi or else. This leads to create more general rules 

and premises created from this kind of correlated components 

are assigned to all the C classes. 

--CCSy i =  CCy i\CCyi : found from the non-class yi sub-

datasets Ω𝑦 𝑖. These correlated components could predict 

examples not belonging to yi; so we assign to premises created 

from this type of correlated components all the classes except 

yi. 

 

The algorithm of one class against all others is given below: 

 

for 𝑖 ∈  1, … , 𝐶  : 
1) Regroup all the examples belonging to the class yi in Ω𝑦i 

and all others into Ω𝑦 i. 

2) Look for correlations (as described before) on each sub-

dataset. Two correlations’ matrixes are then calculated 

𝑅𝑦i and 𝑅𝑦 i. 

3) Threshold 𝑅𝑦i and 𝑅𝑦 i and extract correlated 

components CCyi  and CCy i  from each matrix.  

4) Let CCSyi  = CCyi \ CCy i  and CCSy i =  CCy i\CCyi  

a) CCSyi  allows to create premises labeled with only yi.  

b) CCy i  allows to create premises labeled with all classes 

yk besides yi  (𝑘 ∈  1, … , 𝑖 − 1, 𝑖 + 1, … , 𝐶 ). 

c) CCSyi ,y i  = CCyi  ∩ CCy i allows to create rules labeled 

with all classes. 

--CCSyi  components allow to construct a base of rules 

denoted by  BRyi . 

--CCy icomponents allow to construct a base of rules BRy i. 

--CCSy,y =  CCSyi ,y i
C
i=1 . These components allow to 

construct the base of rules  BRy,y . 

--𝐵𝑅𝑓 =   BRyi  𝑈 BRy i + BRy,y  𝐶
𝑖=1  is the final classifier. 

--Each BRyi  𝑈 BRy i 𝑈 BRy,y  represents a specific 

classifier for the recognition of yi. 

Consequently, C classifiers are created. Each one is 

specialized in the recognition of one class. All classifiers 

represent the final learner, which we use in training.  

The whole process is summarized in the Fig.4. 

The number of rules always depends on the fixed threshold   

𝜃 and M (the cardinal of a subdivision).  Some rules will 

simply not be generated if the coefficient of belief reaches 0. 

We are more interested in the accuracy of the classifier than in 

the number of generated rules. Several methods of number 

rules base optimization have already been discussed in [12], 

[6]. 

 
Fig. 3.  One class against all others correlations 
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IV. EXPERIMENTAL RESULTS 

In order to assess the accuracy of the one class against all 

method, it was tested on several datasets (numeric and 

symbolic) from the UCI Machine Learning system 

Repository
1
 and PROMISE Repository

2
. We present here the 

details of the results obtained with the Iris dataset. Other 

results, with different datasets, are presented in annex. The 

accuracy is computed as the percentage of correct 

classifications. All experiments were carried out using a 10-

fold cross-validation approach. 

Our study is about comparing the effectiveness of OAA 

approach in comparison with the previous techniques of 

correlations research. All experiments were tested with 

different data types (numerical, categorical and mixed) and 

different number of discretization intervals and thresholds. 

The accuracy ratios (at the first cell’s line) and the number of 

generated rules (at the second) are shown in each table. The 

first four tables study and compare the accuracy of one class 

against all others with inter-classes (all classes merged 

together) and intra-classes classification, within the data sets 

of Iris. The first three tables represent results obtained with 

Pearson linear correlation. Each table shows results of a fixed 

number of discretization intervals (3, 5 and 7). Ratios 1 and 2 

show the effectiveness (percentage of Correct Classifications 

(CC)) of intra-class compared to the classic inter-class 

classification and our approach as well. 

Ratio 1 = CCIntra-Classes/CCInter-Classes 

Ratio 1 = CCOAA/CCInter-Classes 

 
1 ftp ://ftp.ics.uci.edu 
2 http://promisedata.org 

 
TABLE I 

IRIS DATASET, UNSUPERVISED DISCRETIZATION (3), LINEAR CORRELATION. A 

COMPARISON OF OAA CLASSIFICATION WITH INTER AND INTRA-CLASSES. 

Threshold 0.9 0.8 0.5 

Inter-Class 96.66  
(23) 

95.33 

 (20) 

95.33 

 (20) 

Intra-Class 97.33 

(25) 
97.33 

(36) 

96.66 

 (66) 

OAA 97.33 

 (47) 

95.99 

 (50) 

95.99 

 (67) 

Ratio 1 1.01 1.02 1.01 

Ratio 2 1.01 1.01 1.01 
 

TABLE II 

IRIS DATASET, UNSUPERVISED DISCRETIZATION (5), LINEAR CORRELATION. A 

COMPARISON OF OAA CLASSIFICATION WITH INTER AND INTRA-CLASSES. 

Threshold 0.9 0.8 0.5 

Inter-Class 93.99 (38) 

 

91.33 (39) 

 

91.33 (39) 

 

Intra-Class 93.99 (38) 

 

93.33 (57) 

 

93.33 (122) 

 

OAA 93.99 (76) 

 

94.00 (93) 

 

86.00 (139) 

 

Ratio 1 1.00 1.02 1.02 

Ratio 2 1.00 1.03 0.94 

 
TABLE III 

IRIS DATASET, UNSUPERVISED DISCRETIZATION (7), LINEAR CORRELATION. A 

COMPARISON OF OAA CLASSIFICATION WITH INTER AND INTRA-CLASSES. 

Threshold 0.9 0.8 0.5 

Inter-Class 90.00  

(49) 

85.33  

(58) 

85.33  

(58) 

Intra-Class 0.8999 

(47) 

0.9133  

(73) 

93.99  

(182) 

OAA 90.66  

(95) 

93.33  

(131) 

87.33  

(207) 

Ratio 1 1.00 1.07 1.10 

Ratio 2 1.01 1.09 1.02 

 

From these results, we see that OAA generally leads to 

better performances than the standard inter-class classification 

and shows quite similar or better classifications than the intra-

class. The better performance of OAA is notably noticed with 

a higher number of discretization intervals (here with 7 

intervals) and lower threshold. As intra-class, OAA performs 

better with the worst inter-class classification results. OAA 

helps then to overcome these imperfections (a high number of 

discretization intervals and low threshold). Table IV shows 

that OAA performs even better when the Chi Squared test is 

used. OAA improves classification accuracy in “Iris” until 

43% with a higher discretization interval (7). 
 

 

TABLE IV 

IRIS DATASET, CHI SQUARED TEST. A COMPARISON OF OAA CLASSIFICATION 

WITH INTER AND INTRA-CLASSES. 

Discretization 

intervals 

3 5 7 

Inter-Class 93.33 
(22) 

78.66 

(47) 

65.99 

(74) 

 
Fig. 4.  One against all others classification 
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Intra-Class 97.33 
(25) 

93.33 

(54) 

89.99 

(47) 

OAA 97.33 
(69) 

94.00 

(132) 

94.66 

(187) 

Ratio 1 1.04 1.19 1.36 

Ratio 2 1.04 1.20 1.43 

 

The higher number of generated rules is explained by the 

fact that OAA discovers more and maybe better correlations 

within the data sets. This could explicain the performances’ 

improvements of our approach. 

OAA shows also worse performances (for example within 

the iris dataset, table II, ratio 2). This could be explained by 

the error rate caused by a “false negative” component. A false 

negative (i.e., predicting “no” when the correct label is “yes”) 

is more disastrous than a false positive (i.e., predicting “yes” 

when the correct label is “no”) because a false negative results 

in 1/c (c: number of classes) probability of correct predictions, 

while for a false positive this probability is 1/2 [13]. Making 

an error on CCSy i could noticeably decrease the 

performance of our approach.  
Numeric datasets (Iris, 4-0-final_4-2-final and Diabetes) are 

trained with linear correlation. Mixed and symbolic datasets 

are tested with the Symmetrical Uncertainty coefficient 

(except Vote is tested with V-Cramer). 

 
TABLE V 

Benchmark results - OAA VS intra-class and inter-class 

calssification 
 Best Scores 

Discretization 

intervals 
3 5 7 

Iris  

Inter-Class 96.66 93.99 90.00 

Intra-Class 97.33 93.99 93.99 

OAA 97.33 94.00 93.33 

4-0-final_4-2-final  

Inter-Class 68.29 70.43 67.91 

Intra-Class 68.29 71.53 68.26 

OAA 67.92 70.06 68.25 

Diabetes    

Inter-Class 65.75 73.42 71.22 

Intra-Class 65.23 74.34 71.60 

OAA 65.75 74.21 71.73 

Labor  

Inter-Class 76.99 73.66 79.33 

Intra-Class 81.99 76.99 84.33 

OAA 78.66 75.33 86.33 

Colic  

Inter-Class 67.38 74.45 75.28 

Intra-Class 67.38 74.18 75.01 

OAA 67.38 74.18 75.01 

 

 

Dataset Best scores 

Breast-Cancer  

Inter-Class 70.28 

Intra-Class 73.39 

OAA 72.73 

 

Vote 

 

Inter-Class 92.65 

Intra-Class 94.23 

OAA 91.26 

 

The accuracy of the OAA approach generally exceeds that 

of the inter-class approach and is comparable with intra-class 

approach (table V, see appendix). The OAA and intra-class are 

generally better than the classic approach (inter-class) except 

with Colic and 4-0-final_4-2-final datasets (with OAA) but 

with the cost of higher number of rules. 

 

V. CONCLUSION 

We have shown that the One Class Against All Others 

classification generally performs better than the traditional 

inter-class approach. A great cardinal of subdivisions (with the 

regular discretization) and lower thresholds lead generally (or 

at least for the most cases), for both approaches (intra-class 

and OAA), to higher performances.  

In general, OAA performances are mitigated. A major 

disadvantage of the OAA approach is that it takes more time 

in training than the other methods because of the number of 

treated sub-datasets. Also, because of its error rate, OAA is 

not the best method [14], [15], [10]. In literature, several 

improvements are then proposed to surmount this major 

disadvantage [13], [16]. These works open a way to new 

perspectives under the framework of discovering 

dependencies.  

 

APPENDIX 

 

TABLE VI 

4-0-FINAL_4-2-FINAL DATASET, UNSUPERVISED DISCRETIZATION (7), LINEAR 

CORRELATION. A COMPARISON OF OAA CLASSIFICATION WITH INTER AND 

INTRA-CLASSES. 

Threshold 0.9 0.8 0.5 

Inter-Class 67.91 

(71) 

67.91 

(71) 

67.18 

(63) 

Intra-Class 0.6826 

(105) 

67.53 

(68) 

67.91 

(86) 

OAA 67.53 

(106) 

67.53 

(67) 

68.25  

(88) 

Ratio 1 1.01 0.99 1.01 

Ratio 2 0.99 0.99 1.02 
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TABLE VII 

4-0-FINAL_4-2-FINAL DATASET, CHI SQUARED TEST. A COMPARISON OF OAA 

CLASSIFICATION WITH INTER AND INTRA-CLASSES. 

Discretization 

intervals 

3 5 7 

Inter-Class 66.49 
(32) 

60.26 

(83) 

62.47 

(110) 

Intra-Class 68.29 

(36) 
70.43 
(82) 

68.33 

(86) 

OAA 68.66 

(43) 
72.28 
(78) 

67.96 

(90) 

Ratio 1 1.03 1.17 1.09 

Ratio 2 1.03 1.20 1.09 
 

TABLE VIII 

BREAST-CANCER DATASET, SU CORRELATION. A COMPARISON OF OAA 

CLASSIFICATION WITH INTER AND INTRA-CLASSES. 

Threshold 0.9 0.8 0.5 

Inter-Class 69.58 

(78) 

70.28 

(83) 

70.28 

(83) 

Intra-Class 0.6958 

(78) 

70.28 

(90) 

73.39 

(240) 

OAA 69.58 

(78) 

69.92 

(90) 

72.73 

(211) 

Ratio 1 1.00 1.00 1.04 

Ratio 2 1.00 0.99 1.03 
 

TABLE IX 

VOTE DATASET, V CRAMER CORRELATION. A COMPARISON OF OAA 

CLASSIFICATION WITH INTER AND INTRA-CLASSES. 

Threshold 0.9 0.8 0.5 

Inter-Class 91.26 

(64) 
92.65 
(139) 

89.21 

(192) 

Intra-Class 91.26 

(64) 
94.23 
(160) 

92.41 

(267) 

OAA 91.26 

(64) 
91.71 
(139) 

88.98 

(225) 

Ratio 1 1.00 1.02 1.04 

Ratio 2 1.00 0.99 1.00 
 

TABLE X 

LABOR DATASET, UNSUPERVISED DISCRETIZATION (7), SU CORRELATION. A 

COMPARISON OF OAA CLASSIFICATION WITH INTER AND INTRA-CLASSES. 

Threshold 0.9 0.8 0.5 

Inter-Class 79.33 

(104) 

79.33 

(104) 

80.99 

(104) 

Intra-Class 79.33 

(104) 

74.33 

(122) 

84.33 

(153) 

OAA 79.33 

(104) 

78.00 

(119) 

86.33 

(149) 

Ratio 1 1.00 0.93 1.04 

Ratio 2 1.00 0.98 1.07 
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