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Abstract. Given a multiple alignment of orthologous DNA sequences
and a phylogenetic tree for these sequences, we investigate the problem
of reconstructing the most likely scenario of insertions and deletions ca-
pable of explaining the gaps observed in the alignment. This problem,
that we called the Indel Maximum Likelihood Problem (IMLP), is an im-
portant step toward the reconstruction of ancestral genomics sequences,
and is important for studying evolutionary processes and genome func-
tion. We solve the IMLP using a new type of tree hidden Markov model
whose states correspond to single-based evolutionary scenarios and tran-
sitions model dependencies between neighboring columns. The standard
Viterbi and Forward-backward algorithms are optimized to produce the
most likely ancestral reconstruction and to compute the level of confi-
dence associated to specific regions of the reconstruction. The method is
illustrated on a set of 85kb sequences from eight mammals.

keywords: Ancestral genome reconstruction; Insertions and
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1 Introduction

It has recently been shown that the phylogeny of eutherian mammals is such
that an accurate reconstruction of the genome of an early ancestral mammal
is possible [1]. The ancestral genome reconstruction procedure involves several
difficult steps, including the identification of orthologous regions in different
extant species, ordering of syntenic blocks, multiple alignment of orthologous
sequences within each syntenic block, and reconstruction of ancestral sequences
for each aligned block. This last step involves the inference of the set of sub-
stitutions, insertions, and deletions that have may have produced a given set
of multiply-aligned extant sequences. While the problem of reconstructing sub-
stitutions scenarios has been well studied (starting with Felsenstein (1981) [7]),
the inference of insertions and deletions scenarios has received less attention (but
see the seminal contribution of Thorne, Kishino and Felsenstein [19]). The diffi-
culty of the problem is due in large part to the fact that insertions and deletions
(indels) often affect several consecutive nucleotides, so the columns of the align-
ment cannot be treated independently, as opposed to the maximum likelihood



problem for substitutions [7]. The reconstruction of the most parsimonious sce-
nario of indels required to explain a given multiple sequence alignment has been
shown to be NP-Complete by Chindelevitch [5] et al., but good heuristics have
been developed by Blanchette et al. [1], Chindelevitch et al. [5], and Fredslund
et al. [9].

A maximum likelihood reconstruction would be preferable to a most parsi-
monious reconstruction because it would be more accurate and would allow to
estimate the uncertainty related to certain aspects of the reconstruction. Sim-
ilarly to statistical alignment approaches [13] (which unfortunately remain too
slow for genome-wide reconstructions), we seek to gain a richer insight into an-
cestral sequences and evolutionary processes. In this paper, we thus focus on the
problem we call the Indels Maximum Likelihood Problem (IMLP). It consists
of inferring the set of insertions and deletions that has the maximal likelihood,
according to some fixed evolutionary parameters, and that could explain the
gaps observed in a given alignment. An example of the input and output of this
problem are shown in Figure 1. Indel evolutionary scenarios are useful for several
other problems such as annotating functional regions of extant genomes, includ-
ing protein-coding regions [17], RNA genes [15], and other types of functional
regions [16].

Here, we start by giving a formal definition of the Indel Maximum Like-
lihood Problem. To solve the problem, we use a special type of tree Hidden
Markov Model, which is a combination of a standard Hidden Markov Model and
a phylogenetic tree. We show how the most likely path through the tree-HMM
leads to the most likely indel scenario and how a variant of the standard Viterbi
algorithm can solve the problem. Although the size of the HMM is exponential
in the number of extant species considered, we show how the knowledge given
by the phylogenetic tree and the aligned sequences allows the state space of
the HMM to be considerably reduced, resulting in a practical, yet exact, algo-
rithm. Our implementation is able to solve large problems on a simple desktop
computer and allows for an easy parallelization. Finally, we assess the complex-
ity and accuracy of our algorithm on a multiple alignment of eight orthologous
mammalian genomic sequences of ∼50kb each.

2 The Indel Maximum Likelihood Problem

In this section we will give a precise definition for the Indel Maximum Likelihood
Problem (IMLP). Consider a rooted binary phylogenetic tree T = (VT , ET ) with
branch lengths λ : VT → R+. If n is the number of leaves of T , there are n − 1
internal nodes and 2n− 2 edges.

Consider a multiple alignment A of n orthologous sequences corresponding
to the leaves of the tree T . Since the only evolutionary events of interest here are
insertions and deletions, A can be transformed into a binary matrix, where gaps
are replaced by 0’s and nucleotides by 1’s. Let Ax be the row of the binarized
alignment corresponding to the sequence at leaf x of T , and let Ax[i] be the
binary character at the i-th position of Ax. Assume that the alignment A con-



1 2 3 4 5 6 7
0 0 0 0 1 1 1
0 1 0 0 1 0 1 
0 1 1 1 0 0 0
1 0 0 0 0 0 0
1 1 1 1 0 0 0

del (2,2), ins (6,6)
del (3,4), ins (5,7)

ins (1,1)

del (2,4)

0 1 0 0 1 0 1
0 1 1 1 0 0 0
0 1 1 1 0 0 0
1 1 1 1 0 0 0 

Ancestral reconstructionMultiple alignment Indel Scenario

Fig. 1. Example of an input and output to the Indel Maximum Likelihood Problem.
The input consists of a multiple alignment (shown on the left in binary format) and
the topology and branch lengths of the phylogenetic tree. The output consists of a
set of insertions and deletions, placed along the edges of the tree, explaining the gaps
(zeros) in the alignment. The dashed boxes in the alignment indicate the deletions and
the shaded boxes indicate the insertions of the scenario shown on the right. This set
of operations yields the ancestral reconstruction shown on the right.

tains L columns, we add for convenience two extra columns, A[0] and A[L+ 1],
consisting exclusively of 1’s.

Definition 1 (Ancestral reconstruction). Given a multiple alignment A of
n extant sequences assigned to the leaves of a tree T , an ancestral reconstruction
A∗ is an extension of A that assigns a sequence A∗

u ∈ {0, 1}L+2 to each node u
of T , and where A∗

u = Au whenever u is a leaf.

An ancestral reconstruction thus specifies, for each ancestral node of T , what
positions were occupied by a nucleotide and what positions had a gap (see Figure
1 for an example). The following restriction on the set of possible ancestral
reconstructions is necessary in some contexts.

Definition 2 (Phylogenetically correct ancestral reconstruction). An
ancestral reconstruction A∗ is phylogenetically correct if, for any u, v, w ∈ VT
such that w is located on the path between u and v in T , we have A∗

u[i] = A∗
v[i] =

1 =⇒ A∗
w[i] = 1.

Requiring an ancestral reconstruction to be phylogenetically correct corre-
sponds to assuming that any two nucleotides that are aligned in A have to be
derived from a common ancestor, and thus that all the ancestral nodes between
them have to have been a nucleotide. This prohibits aligned nucleotides to be the
result of two independent insertions. Assuming that this property holds perfectly
for a given alignment A is somewhat unrealistic, but, for mammalian sequences,
good alignment heuristics have been developed (e.g. TBA [2], MAVID [3], MLA-
GAN [4]) and have been shown to be very accurate [2]. In the future, we plan
to relax this assumption, but, for now, we will concentrate only on finding phy-
logenetically correct ancestral reconstructions.

Since we are considering insertions and deletions affecting several consecutive
characters, we delimit each operation by the positions s and e in the aligned



sequences where it starts and ends. Let x and y be two nodes of the tree, where
x is the parent of y. The alignment consisting of rows A∗

x and A∗
y is divided into

a set of regions defined as follows (see Figure 2).

Definition 3 (Deletions, Insertions, Conservations, and Length).

– The region (s, e) is a deletion if (a) for all i ∈ {s, . . . , e}, A∗
y[i] = 0, (b)

A∗
x[s] = A∗

x[e] = 1, and (c) no region (s′, e′) ⊃ (s, e) is a deletion (i.e. we
only consider regions that are maximal).

– The region (s, e) is an insertion if (a) for all i ∈ {s, . . . , e}, A∗
x[i] = 0, (b)

A∗
y[s] = A∗

y[e] = 1, and (c) no region (s′, e′) ⊃ (s, e) is an insertion.
– The region (s, e) is a conservation if (a) for all i ∈ {s, . . . , e}, A∗

x[i] = A∗
y[i]

and (b) no region (s′, e′) ⊃ (s, e) is a conservation.
– The length of region (s, e) is the number of non-trivial positions it contains:
l(s, e) = |{s ≤ i ≤ e|A∗

x[i] 6= 0 or A∗
y[i] 6= 0}|.

A pair of binary alignment rows A∗
x and A∗

y can thus be partitioned into a set
of non-overlapping insertions, deletions, and conservations.

Ax: 1  1101  00  1010  1  001

Ay: 1  0000  11  1010  0  001

              C1       D1          I1          C2        D2      C3

      l(C1)=1 l(D1)=3  l(I1)=2  l(C2)=2 l(D2)=1 l(C3)=1

*
*

Fig. 2. Example of the partition of a paiwise alignment of A∗
x and A∗

y, where x is the
parent of y. The length of each region is given below the region.

Definition 4 (Indel scenario). The indel scenario defined by an ancestral
reconstruction A∗ is the set of insertions and deletions that occurred between the
ancestral reconstructions at adjacent nodes in T .

All that remains is to define an optimization criterion on A∗. Two main
choices are possible: a parsimony criterion or a likelihood criterion.

2.1 The Indel Parsimony Problem

The parsimony approach for the indel reconstruction problem has been intro-
duced by Fredslund et al. [9] and Blanchette et al. [1]. In its simplest version,
it attempts to find the phylogenetically correct ancestral reconstruction A∗ that
minimizes the total number of insertions and deletions defined by A∗:

indelParsimony(A∗) =
∑

u,v:(u,v)∈E

|{(s, e) : (s, e) is a deletion or an insertion from A∗
u to A∗

v}|



The Indel Parsimony Problem is NP-Hard [5]. Most authors have studied a
weighted version of the IPP where the cost of indels depends linearly on their
length (affine gap penalty). Blanchette et al. [1] proposed a greedy algorithm,
and good exact heuristics have been developed [5, 9]. The limitation of these
approaches is that they only give a single solution as output, and provide no
measure of uncertainty of the various parts of the reconstruction. In contrast, a
likelihood-based approach has the potential of providing a more accurate solution
and a richer description of set of possible solutions.

2.2 Indel Maximum Likelihood Problem

In this section, we define the indel reconstruction problem in a probabilistic
framework and similar to the Thorne-Kishino-Felsenstein model [18]. To this
end, we need to define the probability of transition between an alignment row
A∗
x and its descendant row A∗

y. This probability will be defined as a function
of the probability of the insertions, deletions, and conservations that happened
from A∗

x to A∗
y.

Let PDelStart(λ(b)) be the probability that a deletion starts at a given po-
sition in the sequence, along a branch b of length λ(b), and PInsStart(λ(b))
is defined similarly. We assume that these probabilities only depend on the
length λ(b) of the branch b along which they occur, but not on the position
where the indel occurs. A reasonable choice is PDelStart(λ(b)) = 1 − e−ψDλ(b)

and PInsStart(λ(b)) = 1 − e−ψIλ(b), for some deletion and insertion rate pa-
rameters ψD and ψI , but our algorithm allows for any other choice of these
probabilities. Thus, the probability that none of the two events happens at
a given position, which we call the probability of a conservation, is given by
PCons(λ(b)) = e−(ψD+ψI)λ(b). We assume that the length of a deletion fol-
lows a geometric distribution, where the probability of a deletion of length k
is αk−1

D (1− αD) and the probability of an insertion of length k is αk−1
I (1− αI).

One can thus see αD (resp. αI) as the probability of extending a deletion (resp.
insertion). This assumption, necessary to design a fast algorithm, holds rela-
tively well for short indels, but fails for longer ones [12]. Our algorithm allows
the parameters αD and αI to depend on the branch b, but the results reported in
Section 5 correspondtothecasewherealphaD and αI were held constant across
the tree. The probability that alignment row A∗

x was transformed into alignment
row A∗

y along branch b can be defined as follows:

Pr(A∗
y|A∗

x, b) =
∏

(s,e): deletion from A∗x to A∗y

PDelStart(λ(b)) · (αl(s,e)−1
D (1− αD)) ·

∏
(s,e): insertion from A∗x to A∗y

PInsStart(λ(b)) · (αl(s,e)−1
I (1− αI)) ·

∏
(s,e):conservation from A∗x to A∗y

(PCons(λ(b))l(s,e)



This allows us to formulate precisely the problem addressed in this paper:
INDEL MAXIMUM LIKELIHOOD PROBLEM (IMLP):
Given: A multiple sequence alignment A of n orthologous sequences related by
a phylogenetic tree T with branch lengths λ, a probability model for insertions
and deletions specifying the values of ψD, ψI , αD, and αI .
Find: A maximum likelihood phylogenetically correct ancestral reconstruction
A∗ for A, where the likelihood of A∗ is:

L(A∗) =
∏

b=(x,y)∈ET

Pr[A∗
y|A∗

x, b]

3 A Tree-Hidden Markov Model

In this section, we describe the tree-based hidden Markov model that is used
to solve the IMLP. A tree-Hidden Markov Model (tree-HMM) is a probabilistic
model that allows two processes to occur, one in time (related to the sequence
history in a given column of A), and one in space (related to the changes to-
ward the neighboring columns). Tree HMMs were introduced by Felsenstein and
Churchill [8] and Yang [20] to improve the phylogenetic models that allows for
variation among sites in the rate of substitution, and have since then been used
for several other purposes (detecting conserved regions [16] and predicting genes
[17]). Just as any standard HMM [6], a tree-HMM is defined by three compo-
nents: the set of states, the set of emission probabilities, and the set of transition
probabilities.

3.1 States

Intuitively, each state corresponds to a different single-column indel scenario
(although additional complication are described below). Given a rooted binary
tree T = (VT , ET ) with n leaves, each state corresponds to a different labeling of
the edges ET with one of three possible events: I (for insertion), D (for deletion),
or C (for conservation). The set S of possible states of the HMM would then
be S = {I,D,C}2n−2. However, this definition is not sufficient to model certain
biological situations (see Figure 3). We will use the ’*’ symbol to indicate that,
along a certain branch b = (x, y), no event happened because there was a base
neither at node x nor at node y. This will happen in two situations: when edge b is
a descendant of edge b′ that was labeled with D (i.e. the base was deleted higher
up the tree), and when there exists an edge b′ that is not between b and the root
and that is labeled with I (i.e. an insertion happened elsewhere in the tree). The
fact that these extraneous events can potentially interrupt ongoing events along
branch b means that the HMM needs to have a way to remember what event
was actually going on along that branch. This transmission of memory from
column to column is achieved by three special labels: I∗, D∗, and C∗, depending
on whether the ∗ regions is interrupting an insertion, deletion, or conservation.
Thus, we have S ⊆ {I,D,C, I∗, D∗, C∗}2n−2. Although this state space appears



prohibitively large (62n−2), the reality is that a number of these states cannot
represent actual indel scenarios, and can thus be ignored. The following set of
rules specify what states are valid.

Definition 5 (Valid states). Given a tree T = (VT , ET ), a state s assigning
a label s(b) ∈ {I,D,C, I∗, D∗, C∗} to each branch b ∈ ET is valid if the two
following conditions hold.

– (Phylogenetic correctness condition) There must be at most one branch b
such that s(b) = I.

– (Star condition) Let b ∈ ET , and let anc(b) ⊂ ET be the set of branches
on the path from the root to b. Then s(b) ∈ {I∗, D∗, C∗} if and only if
∃b′ ∈ anc(b) such that s(b′) = D or ∃b′ ∈ (ET \ anc(b)) such that s(b′) = I.

The number of valid states on a complete balanced phylogenetic tree with
n leaves is O(n · 32n) (the number is dominated by states that have a ’I’ on a
branch leading to a leaf, which leaves all other 2n − 3 edges free to be labeled
with either C∗, D∗, or I∗). Although this number remains exponential, it is
significantly better than the 62n−2 valid and invalid states.

3.2 Emission probabilities

In an HMM, each state emits one symbol, according a certain emission proba-
bility distribution. In our tree-HMMs, each state emits a collection of symbols,
corresponding to the set of characters obtained at the leaves of T when indel
scenario s occurs. Intuitively, we can think of a state as emitting an alignment
column. The following definition formalizes this.

Definition 6. Let s be a valid state for tree T = (VT , ET ) with root r. Then,
we define the output of state s as a function Os : VT → {0, 1} with the following
recursive properties:

1. Os(root) =
{

0, if ∃x ∈ VT such that s(x) = I
1, otherwise .

2. Let e = (x, y) ∈ ET , with x being the parent of y. Then,

Os(y) =

0, if s(e) = D
1, if s(e) = I
Os(x), otherwise

Let C be an alignment column (i.e. an assignment of 0 or 1 to each leaf in
T ). We then have the following degenerate emission probability for state s:

Pre[C|s] =
{

1 if Os(x) = C(x) for all x ∈ leaves(T )
0 otherwise

Thus, each state s can emit a single alignment column C. However, many dif-
ferent states can emit the same column.



3.3 Transition probabilities

The last component to be defined is the set of transition probabilities of the
tree-HMM. The probability of transition from state s to state s′, Prt[s′|s] is a
function of set of events that occurred along each edge of T . Intuitively, Prt[s′|s]
describes the probability of the single-column indel scenario s′, given that sce-
nario s occurred at the previous column. This transition probability is a func-
tion of insertions and deletions that started between the two columns, of those
that were extended going from one column to the next. Specifically, we have
Prt[s′|s] =

∏
b∈ET

ρ[s′(e)|s(e), b], where ρ is given in Table 1.

s(e) \ s(e)′ C D I C∗ D∗ I∗

C PCons(λ(b)) PDelStart(λ(b)) PInsStart(λ(b)) 1 0 0
D (1 − αD)PCons(λ(b)) αD (1 − αD)PInsStart(λ(b)) 0 1 0
I (1 − αI)PCons(λ(b)) (1 − αI)PDelStart(λ(b)) αI 0 0 1
C∗ PCons(λ(b)) PDelStart(λ(b)) PInsStart(λ(b)) 1 0 0
D∗ (1 − αD)PCons(λ(b)) αD (1 − αD)PInsStart(λ(b)) 0 1 0
I∗ (1 − αI)PCons(λ(b)) (1 − αI)PDelStart(λ(b)) αI 0 0 1

Table 1. Edges transition table ρ[s′(e)|s(e), b]. Notice that ρ is not a transition prob-
ability matrix, since its rows sum to more than one.

3.4 Tree-HMM paths and ancestral reconstruction

We now show how the tree-HMM described above allows us to solve the IMLP.
Consider a multiple alignment A of length L on a tree T . A path π in the tree-
HMM is a sequence of states π = π0, π1, ..., πL, πL+1. Based on standard HMM
theory, we get:

Pr[π,A] = Pr[π0, A0]
L+1∏
i=1

Pre[A[i]|πi] · Prt[πi|πi−1]

Figure 3 gives an example of an alignment with some of the non-zero proba-
bility paths associated.

Theorem 1. Consider an alignment A on tree T . Then π∗ = argmaxπ Pr[π,A]
yields the most likely indel scenario for A, and a maximum likelihood ancestral
reconstruction A∗ is obtained by setting A∗

u[i] = Oπ∗i (u).

Proof. It is simple to show that for any ancestral reconstruction Â for A, we
have L(Â) = Pr[π,A], where π is the path corresponding to Â. Thus, maximizing
Pr[π,A] maximizes L(Â).
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Fig. 3. The set of valid, non-zero probability states associated to the multiple alignment
given at the top of the figure. When edges are labeled with more than one character
(e.g. C∗, D∗), the tree represents several possible states. For the third column, not
all possible states are shown. Arrows indicate one possible path through the tree-
HMM. This path corresponds to two interleaved insertions, shown by two boxes in the
alignment, illustrating the need for the I∗ character.

4 Computing the most likely path

To compute the most likely path π∗ through a tree-HMM, we adapted the stan-
dard Viterbi dynamic programming algorithm [6]. Let

X(i, k) = max
π = π0, π1, ..., πi
such that πi = k

Pr[π,A[1...i]]

be the likelihood of the most probable path ending at state k for the i first
columns of the alignment. Let c ∈ S be the state made of C’s on all edges of T .
Since the dummy column A[0] consists exclusively of 1’s, c is the only possible
initial state. For any i between 0 and L + 1 and for any valid state s ∈ S, we
can compute X(i, s) as follows:

X(i, s) =

1, if i = 0 and s = c
0, if i = 0 and s 6= c
Pre[A[i]|s] ·maxs′∈S(X(i− 1, s′) · Prt[s|s′]), if i > 0

Finally, π∗ is obtained by tracing back the dynamic programming, starting
from entryX(L+1, c). The running time of a naive implementation of the Viterbi
algorithm is O(|S|2L), which quickly becomes impractical as the size of the tree
T grows. In the next section, we show how to make this computation practical
for moderately large trees and for long sequences.



4.1 Viterbi optimizations

The previous implementation of the Viterbi algorithm cannot be run for large
sequences and number of taxa that is greater to 8 due the number of states that
is O(n32n). Even though the number of states is exponential, most of alignment
columns can only be generated with non-zero probability by a much more man-
ageable number of states. Given an alignment A, it is possible to compute, for
each column A[i], the set Si of valid states that can emit A[i] with non-zero
probability. For instance, an alignment column with only 1’s will lead to only
one possible state, independently of the number taxa n. To compute only the
valid states for a given column of the alignment, we used a divide and conquer
approach that is presented in Algorithm 1. The idea behind this algorithm is
to compute partial valid states for subtrees and to merge these subtrees while
keeping only valid merged states. The process is done in a bottom up fashion
until the root of the tree is reached.

Although the sets of possible states S0, ..., SL+1 obtained from this algorithm
are generally relatively small, more improvements are possible. This is because
the transition probability between most pairs of states is zero. We can thus
remove from Si any state s such that the transition to s from any state in
Si−1 has probability zero. Proceeding from left to right, we get S′0 = S0, and
S′i = {s ∈ Si|∃t ∈ S′i−1 s.t. Prt[s|t] > 0}. For instance, if, in all states of Si−1,
an edge e is labeled by deletion D, then none of the states in Si can have edge
e labeled with C∗ or I∗. This yields a huge improvement for alignment regions
consisting of a number of adjacent positions with a base in only one of the
n species and ensures that the algorithm will be practical for relatively large
number of sequences (see Section 5).

Algorithm 1 buildValidState(node root, C)
Require: root: a tree node, C: an alignment column.
Ensure: Set of valid, non-zero probability states for C.
1: if root is a leaf then
2: return list of possible operations according to the character at that leaf
3: else
4: leftList = buildValidState(root.left, C)
5: rightList = buildValidState(root.right, C)
6: return mergeSubtrees(leftList, rightList, root)
7: end if

4.2 Forward-backward algorithm

A significant advantage of the maximum likelihood approach over the parsi-
mony approach is that it allows evaluating the uncertainty related to certain
aspects of the reconstruction. For example, it is useful to be able to compute
the probability that a base was present at a given position i of a given ancestral



Algorithm 2 mergeSubtrees(StateList leftList, StateList rightList, node root)
Require: leftList and rightList: the lists of partial states, root: a tree node.
Ensure: Set of valid, non-zero probability states combining elements in leftList and

rightList.
1: for all partial states l in leftList do
2: for all partial states r in rightList do
3: if compatible(l, r) == true #merging those two partial states yields

a valid partial state then
4: m = merge(l, r)
5: if root == initialroot then
6: mergedList.add(m)
7: else
8: for all operations on a branch op do
9: if isPossibleUpstream(m,op) #Checks if op can legally be

added to m then
10: mergedList.add(addAncestorBranch(m,op))
11: end if
12: end for
13: end if
14: end if
15: end for
16: end for
17: return mergedList

node u: Pr[A∗
u[i] = 1|A] =

∑
s∈S:Os(u)=1 Pr[πi = s|A]. This allows the computa-

tion of the probability of making an incorrect prediction at a given position of a
given ancestor. The forward-backward is a standard HMM algorithm to compute
Pr[πi = s|A] (see [6] for details):

F (i, s) =


1, if i = 0 and s = c
0, if i = 0 and s 6= c
Pre[A[i]|s] ·

∑
s′∈S′i−1

(F (i− 1, s′) · Prt[s|s′]), if i > 0

B(i, l) =


1, if i = L+ 1 and l = c
0, if i = L+ 1 and l 6= c∑
s′∈S′i+1

Pre[A[i+ 1]|s′] · F (i+ 1, s′) · Prt[s′|s]), if i < L+ 1

Pr[πi = s|A] =
F (i, s)B(i, s)∑

s′∈S′i
F (i, s′)B(i, s′)

The optimizations developed for the Viterbi algorithm can be also directly
applied to the Forward-Backward algorithm.

5 Results

Our tree-HMM algorithm was implemented as a C program that is available upon
request. The program was applied to a 50kb region of chromosome 13 of human,
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Fig. 4. Phylogenetic tree for the eight species studied in this paper.

Ancestor % of agreement

Cow + Dog 99.38
Mouse + Rat 97.83
Human + Chimp 99.83
Human + Chimp + Mouse + Rat 99.33
Human + Chimp + Mouse + Rat + Cow + Dog 98.41
Human + Chimp + Mouse + Rat + Cow + Dog + Armadillo 94.13
Human + Chimp + Mouse + Rat + Cow + Dog + Armadillo + Elephant 89.01
Table 2. Percentage of alignment columns where there is agreement between the an-
cestor reconstructed by the greedy algorithm of Blanchette et al. [1] and that predicted
by our maximum-likelihood algorithm.

together with orthologous regions in 7 other species of mammals: chimp, mouse,
rat, cow, dog, armadillo, and elephant3 [14]. This region is representative of the
whole genome, and contains coding, intergenic regions, and intronic regions. The
multiple alignment of these regions, computed using TBA [2], contains 85,000
columns. The phylogenetic tree used for the alignment and for the reconstruction
is shown in Figure 4. The branch lengths are based on rates of substitution
estimated on a genome-wide basis. The parameters of the indel model were set
as follows: ψD = 0.05, ψI = 0.05, αD = 0.9 and αI = 0.9.

We first compared the maximum likelihood ancestral reconstruction found
using our Viterbi algorithm to the ancestors inferred using the greedy algorithm
of Blanchette et al. [1]. Table 2 shows the degree of agreement between the two
reconstructed ancestors, for each ancestral node. We observe that both methods
agree to a very large degree. The most disagreement concerns the ancestor at
the root of the eutherian tree, which, in the absence of an outgroup, cannot be
reliably predicted by any method. We expect that in most cases of disagreement,
the maximum likelihood is the most likely to be correct, although the opposite
may be true in case of gross model violations [11].

The main strength of the likelihood-based method is its ability to measure un-
certainty, using the forward-backward algorithm, which something that no pre-
vious method allowed. The probability that the maximum posterior probability
reconstruction is correct is simply given by max{Pr[A∗

u[i] = 1|A], 1−Pr[A∗
u[i] =

3 In the case of cow, armadillo, and elephant, the sequence is incomplete and a small
fraction of the bases are missing.



1|A]}. For example, if Pr[A∗
u[i] = 1|A] = 0.3, then the maximum posterior prob-

ability reconstruction would predict A∗
u[i] = 0, and would be right with proba-

bility 0.7. Figure 5 shows the distribution of this probability of correctness, for
each ancestral node in the tree. We observe, for example, that 97.7% of the posi-
tions in the Boreoeutherian ancestor (the human+chimp+mouse+rat+cow+dog
ancestor, living approximately 70 million years ago), are reconstructed with a
confidence level above 99% 4. The ancestor that is the easiest to reconstruct
confidently is obvious the human-chimp ancestor, where less than 0.5% of the
columns have a confidence level below 99%. Again, the root of the tree is the
node that is the most difficult to be reconstructed confidently, because of the
absence of an outgroup. Overall, this shows that most positions of most ances-
tral nodes can be reconstructed very accurately, and that we can identify the
few positions where the reconstruction is uncertain.

A potential drawback of the tree-HMM method is that it’s running time
is, in the worst case, exponential on the number of sequences being compared.
However, the optimizations described in this paper greatly reduce this num-
ber, so the algorithm remains quite fast. Our optimized Viterbi algorithm pro-
duced its maximum likelihood ancestral predictions on the 8-species alignment
of 85,000 columns in two hours in an intel Pentium IV machine (3.2 Ghz), while
the forward-backward algorithm produced an output after approximately four
hours. Figure 6 shows the distribution of the number of states that were actu-
ally considered, per alignment column, in the case of the 8-species alignment
of 85,000 columns. Most alignment column are actually associated to less than
50 states. However, a small number of columns are associated to a very large
number of states (8 columns have more than 21,000 states). Fortunately, these
columns are rarely consecutive, so the incurred running time is not catastrophic.

6 Discussion and Future Work

The method developed here allows predicting maximum likelihood indel sce-
narios and their resulting ancestral sequences for reasonably large alignments.
Furthermore, it allows the estimation of the probability of error in any part of the
prediction, using the forward-backward algorithm. Integrated into the pipeline
for whole-genome ancestral reconstruction, it will improve the quality of the pre-
dictions and allow richer analyses. The main weakness of our approach is that
it assumes that a correct phylogenetic alignment is given as input. While many
existing multiple alignment programs have been shown to be quite accurate on
mammalian genomic sequences (including non-functional or repetitive regions)
[2], it has also been shown that a sizeable fraction of reconstruction errors is due
to incorrect alignments [1]. Ideally, one would include the optimization of the
alignment directly in the indel reconstruction problem, as originally suggested
by Hein [10]. However, with the exception of statistical alignment approaches
4 We need to to keep in mind, though, that these numbers assume the correctness of

the multiple alignment, as well as that of the branch lengths and indel probability
model, so that they do not reflect the true correctness of the reconstructed ancestor.
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[13] (which remains too slow to be applicable on a genome-wide scale), genomic
multiple alignment methods do not treat indels in a probabilistic framework.
We are thus investigating the possibility of using the method proposed here to
detect certain types of small-scale alignment errors, and to suggest corrections.

When predicting ancestral genomic sequences, it is very important to be able
to quantify the uncertainty with respect to certain aspects of the reconstruction.
Our forward-backward algorithm calculates this probability of error for each
position of each ancestral species. However, errors in adjacent columns are not
independent: if position i is incorrectly reconstructed, it is very likely that po-
sition i+ 1 will be wrong too. We are currently working on models to represent
this type of correlated uncertainties. This new type of representation will play
an important role in the analysis and visualization of ancestral reconstructions.

Finally, to be applicable to complete genomes, and to scale up to the * *20
mammalian genomes that will soon be available, our algorithm will require fur-
ther optimizations. These will probably require us to move away from an exact
algorithm toward approximation algorithms.
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